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PREFACE

The dynamic urban growth models discussed in this report

build upon research begun in 1976 and reported on in the U.S.

Department of Transportation Report No. DOT-TSC-RSPA-78-20.I,
II October 1978. In this previous report we de!eloped two
models: the inter-urban model which describes the evolution of

urban centers within a region, and the intra-urban model which

describes the structural evolution within each center. This
report presents a further extension of these models including an

analysis of an urban system's dynamic, "collective" organization.

Section 3 of this report on dynamic models of competition

between transportation modes has also been published in Environ­
ment and Planning International Journal of Urban and Regional

Research, Volume II, 1979 co-authored by J.L. Deneubourg and
A. de Palma from the University of Brussels and D. Kahn from the

Transportation Systems Center.

The technical monitor, D. Kahn, of the contract under which

this work was performed would like to take this opportllility to

acknowledge the copy and production editing of Caron Tsapatsaris

for this report.
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EXECUTIVE SUMMARY

This report describes the further development and exploration

of the dynamic models of urban evolution for which the basic
methodology was laid down in work performed by our group under a
previous contract (TSC-1185 - Final Report).l These methods are

derived from new concepts that have recentiy emerged in the physi­
cal sciences in connection with the discovery of "dissipative

2 3structures" , . These occur in physical systems having elements

which interact in a non-linear manner, involving positive and
negative feedback loops, and which are open to the exterior,
exchanging matter and/or energy with the outside world, and in

this way remaining far from thermodynamic equilibrium.

The evolution of such systems involves both deterministic
stab~e periods, as well as bifurcation points in the vicinity of
which instabilities occur, when "fluctuations," small local
inhomogeneities, are amplified and carry the system to some new,
qualitatively different state of organization. This process of
"order by fluctuation" is of great generality for the evolution
of complex systems, and applies to systems composed of basic units
which are themselves already macroscopic objects containing

mechanisms governing their interactions with the environment and
with the other elements of the systems. Thus, given some basic
"behaviour pattern" of the individual elements, their mutual
interaction can lead to a self-organization of the system through
successive instabilities of the collective structure.

In our'previ.ou-E "r~P~T"t wedevelopedtwomod-els, one
describing the evolution of urban centers within a region, the

inter-urban model, and the other describing the structural
evolution of an urban center, the intra~urban model. In this
report we describe the further extension of these models at

the level of dynamic organization~ and also in the direction
to the "collective" aspects of the behaviour patterns" used to
describe consumer choice, for example, in the urban system. As

xi



we shall see, the modelling of the dynamic evolution of the urban
system entails the description of a collective organization 'Which
results from the mutual interaction of the behaviour patterns of
the various populations, which may in their turn reflect a
"collective organization" at a lower level as the individuals

within the popUlations, interact. The situation is one of insta­
bilities within instabilities and so on!

In the first section the inter-urban model is modified so as
to give a much more realistic representation of the evolution of

the urban centres of a region, where large centers sprawl outwards
forming residential suburbs. The modified version of the model

now corresponds to a picture of the evolution of a region wherein
we not only have the formation of an interacting hierarchy of
urban centers, but also one in which there. is an internal struc­

tural evolution within each center. Only such a model can assess
the real global effects of a modification,forexample, in the
transportation system within a partiCUlar urban center.

The second section is devoted to the development of a new

method which offers the perspective of an enormous simplification
and saving of time in the analysis of a urban evolution. It is a
method based on the techniques of Boolean algegra, in 'Which con­

tinuous variables are replaced by discrete ones, the yes/no,
0/1, of the binary system. Boolean algebra has been applied in
the first instance, to the evolution of the internal structure

of a city. By describing the "presence" or "absence" of a given
popUlation according to 'Whether it is above or below a certain
percentage of the local residents, the very large number of
distinct stationary states which may characterize the continuous
variable differential equations of intra-urban structure , is

reduced remarkably to those which can be distinguished according
to the threshold criteria chosen. Furthermore, the "dynamics"
of such a problem consist in the assignment of probabilities for
the passage from one stationary state to another, and this is

simplified to a problem of time-delays. It is assumed that a
"change" 'When it occurs, concerns only one variable at a time,

xii



and this choice is determined by the probability distributions of

the time-delays of the various variables.

Despite these rather sweeping simplifications, the Boolean
model can nevertheless suffice to answer many of the practical

questions that decision makers and planners may pose - particular­

ly questions concerning the qualitative evolution of the system.
The possible structural repercussions of different strategies can

be estimated therefore in a very simple economical manner.

The models that have been developed so far have attempted to

describe the evolution of urban structures on the basis of some
supposed basic "behaviour pattern" of the populations involved.

Until now we have also treated the choices concerning transporta­

tion in a somewhat oversimplified manner~ However, it is clear
that different populations may exhibit different behaviour, not

only as concerns their place of residence, shopping center or
place of work, but also the mode of transport that they choose for

their regUlar travel. This choice, however, of train, bus, subway

or car will be vital importance in shaping the urban structure,
and of course conversely, the character of the urban structu~e

will affect the choices of transportation mode. The problem of

the competition between different modes of transport, within a
city for example, is a vital step in understanding the city's

structural evolution.

Our study in the third section explores the behaviour of
the demand for a particular mode of transport when the population
requiring to go from A to B is offered a choice. In this case

we aSSwtie that there are two modes of transport in competition
withe-ach oth-er ,andth-a--t --til-e level oi ll satisfaction" for the
average user of a partiCUlar mode has some functional dependence

on the level of use - that is on the fraction that does in fact
adopt that mode.

For some simple, fairly realistic functional dependencies of
the user utility function on the level of use, we show that the

system can possess more than one stationary state. Futhermore,

xiii



we can have more than one stable stationary state, in the vicinity
of which the collective reaction of users to any slight deviation
from this state, is negative. That is to say that the response

of the users is such as to damp any small perturbation of this
ratio for the modal split fractioning of users. Nevertheless,

it is still possible that these stable stationary states corres­
pond to very different levels of global "satisfaction," but that
some large scale Te-organizationis required in order to leave

the less favourable stable state. This is clearly an important
feature for planning decisions, and also for the implications of
inter-modal competition for the evolution of urban structure. As

the urban structure evolves, travel demand between various points
in a city can exceed or fall below thresholds which can lead to

a sudden, discontinuous, change in modal use, and hence in trans­

port "costs." Any integrated model of the global effects of
transport investment, for example on the urban structure and
economy, must take such factors into account.

The integration of these three separate aspects that are

the subject of this report will have to be left for. the future
when general equations may be written down which encompass all
these different elements, and which reduce to the various simpler

equations under well defined assumptions.

The equations for the inter-urban evolution are being tested
by an application to the time evolution of the urb~ hierarchy

of the Bastogne region of Belgium, and clearly the Boolean methods
of the second section can be extended to this model as well.
Similarly, the section devoted to intermodal competition is also

reI event to ~n inter-urban model where apart from the various
modes of passenger travel, there are also those available·to the
transport of merchandise, (airlsea/rail/road/pipeline). Also

this third section raises the question of the relation between
the models which we have described here Land in our previous
report), and various other methods of urban and economic modelling

(global utility functions; optimization techniques; Pareto maxima;
entropy maximization etc.). The clarification of this relation
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should lead to a much more thorough understanding of the real
significance and status of these various methods, which in turn
lead to the establishment of a much more solid foundation to a

"theoretical social dynamics," and hence to the problems of
evolving urban systems.
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1. A DYNAtHC URBAN MODEL

1.1 INTRODUCTION

In our previous reports a dynamic version of central place
theory was developed based on the mutual interaction of the
spatial distributions of population and emplo}Jnent. This inter­

action constituted a positive feedback, which, when the effects
of fluctuations are included explicitly, leads to a self-organi­
zation of the system into an urban hierarchy which reflects the

the dual effects of historical chance and economic necessity.
This introduces the possibility of describing qualitative changes
in the spatial organization of a region, changes which ususlly

mark the breakdown of previously successful extrapolations in the
behaviour of the system.

Our model consists of two sets of equations, one for the

population of each point i, x., and the other for the growth and
decay of economic functions k~ at each point i, S.(k). In the

~

equation for x., the population responds to the employment
~

opportunities at the point i,

dx.
~

dt = bx.
~

(N + IS. (k) - x.) -
k ~ ~

mx.
~

(1)

where band m are related to the birth and death rates respective­
ly as well as to the mobility of the population. N represents
the "natural" carrying capacity of each point of the system in the
absence of economic exchange between different localities.
~ £lCk) repr~sents th~employmen~~~~en~ial at i resuLting from
fhe different economic functions situated there.

We have separ~te equations for the SiCk) which grow according
to the economic demand that is attracted to the point i,

dS. Ck)
~

at = ex S. (k)
~

(Demand for k at

1

i - (2)



The demand arriving at the point i for the ·function k is then
related to the "attractivity" of the point i to each population
x. at j, relative to that of others offering the function k. We

J .
shall return to this point ~ater.

·The other important feature of our model was the random
appearance of economic functions at different points in the
system. The first model was as general as possible, and the

probability of the launching of a particular function was taken
as being uniform over the whole region. In any given experiment,
however, a particular sequence occurs and this leads to a distri­
bution of urban centers following the growth of some centers and
the elimination of others according to the economic laws contained
in equations (1) and (2).

Typically, we have a result such as is shown in Figure 1
after the stochastic launching of two economic functions. At each
point we a~readyhavedomesticfunctions,and the two new func­
t~ons concern economic interaction between the points, of medium
and long range respectively.

Although as we see from Figure 1 the equations (1) and (2)
give rise to a reasonable form for the distribution·of centers;

there is an important mechanism missing from our description:
the competition for space that will occur at a given point. That
is to say that in equations (1) and (2) we have assumed that
employment and residences can be stacked on top of one another
without limit at a given locality. The number of jobs divided
by the number of residents, a r:atio known as the coefficient of
employment, is equal to unity for each point separately. One of
the improvements that we shall describe here is therefore the
correction of this inadequacy in the simplest possible manner.
We sha~1 suppose that with a certain probability, as the effects
of crowding become· more intense, a certain fraction of thepopu­
lation decides to reside on the points neighbouring that of its
place of employment. This is represented by adding two terms
into equation (1), which express the idea that for every "route"
out of an urban center a fraction of the population having

2



FIGURE 1. DISTRIBUTION OF URBAN CENTERS FOLLOWING THE RANDOM LAUNCH­
ING OF TWO EXPORT FUNCTIONS OF MEDIUM ft~D LONG RANGE RESPECTIVELY

• Small Centers with only the lowest order

function K = 1

• Centers with Functions 1 and 2 (pop. in
brackets)

~ Center with Functions 1, 2 and 3
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employment in the center itself will choose to reside at some
distance out, a fraction which depends on the "crowding" at the
center. Of course,the people employed at any two points will
both "decentralize" along the route between them, and the resi~

dent population of each will only change by the net difference
of flows. This idea is expressed by the following equation:

:xti = bx. (N + E S.Ck) - x.) - mx. ~ E e"Sdij (x~ - x~) (3)
~ k~ ~ ~ j J. J

which implies that employment at the point i can be filled by
people residing at the point i, and to a lesser extent by .resi~

dents at the neighbouring points. Each point is "losing"
e-Sdij x~ residents to its neighbours, and we see that this gives

rise to a very simple representation of "residential sprawl"

as the crowding in urban centers becomes severe.

As we shall see, the addition of such a simple term produces
a much more complicated pattern of growth, as well as an internal

dynamics of growing centers. This is because the coupling between
the equations of employment and residence for each point implies
that the pattern of employment will respond to the "decentraliza­

tion," so we will have a complex process of mutual adjustments as
the changes of residence and employment act on each other. Let
us now describe the urbanization pattern of an initially rural

area according to our trlodified scheme of equations (2) and (3) ..

1.2 URBANIZATION OF A REGION

The technique used in modelling the urbanization process is

basically similar to that used in our earlier reports. However,
instead of explicitly "launching" the economic functions,we have
chosen population thresholds above which economic functions appear

spontaneously at a point, and~ave fluctuated the values of the
population variables by a small precentage around their values
as dictated by the equations of evolution. In this way we allow

for the nece5sary uncertainty in the exact value of the population
at a point, supposing some 5 percent variation for small villages,

4



and decreasing to 3 percent for more densely occupied points.

Because of this, when several points are approaching the

necessary value to receive some new level economic activity, these
fluctuations will result in them attaining the threshold in a
random manner, giving rise to a "stochastic launching" of economic

functions similar to our previous method. The economic activity,

once launched, will either find a sufficient market and grow and
prosper, or will be eliminated by its competitors. The advantage
of this new method is that it retains at all times the possibility

of the system adapting to new circumstances, functions appearing
where it was impossible before, owing perhaps to changes in trans­

port technology, or in the relative attractivity of the region
to migrants.

Our equations are:

(5)

(4)

S~k)' (Demand - S~k))
~ ~

=. a.
dt

S (.k): - Sd .. (2 2bX_i (N + l: ~ - xi) - mXi - I e ~J Xi - x.)
k j J

dS ~k)
~

dx.
~ =crt

where the demand is,

Demand = l:
j

A ..
~J

L A.,.
i' ~ J

(6)

where s(k) is the demand per individual for (k) at unit price.

p.~k) is the Co'st of' production of kat -tM -po-i-n't i.
~

¢(k) is the cost of transport for k per unit distance.

d .. is the distance between i and j.
~J

A.. is the attractivity of the center i to popHlation
~J

j for the function k .

r: .A., . is thei' 1. J

x. are
]

sum over the total attractivity to which the
subjected.
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e is some power law.

The demand arriving at the point i for the activity k,falls
therefore into two parts: the falloff in demand with price

involving distance,and secondly, the fraction of x.that in
J

fact chooses i out of all the possible centers offering k.

The precise form that we have used for A.. is,
~J

(7)

where p\is a constant and xth the threshold at which the function

may appear ati. The form of this function corresponds to the

idea that the attractivity grows initially with the intensity of
the activity at the center (measured ·.by the excess population),

but then saturates at some upper level.

Let us now look at the evolution of the population distribu­
tion ofa region which starts off initially as a purely rural
area with no substantial economic interaction between local centers.

As three export functions of successively greater range and market

threshold appear in the system, the urbanization process will
occur.

We have once again chosen a triangUlar lattice numbered as in

Figure 2 and have, for this partiCUlar experiment taken the most
general case where the natural carrying capacity of each point is

. the same. The values chosen for the various parameters are:

(k)
b = .01 m = .1 S = 1. 53 e = 2 P. = 1 d12 = 6

~

::Cl)
= .25 ep (1) = 1 (1) = SOE; xth

(2) = .15 ep (2) = .15 x (2) = 68e: th

e:(3) = .1 ep(3) = .1 x(3) = 84th

e:(4) = .05 ep(4) = .05 x (4) = 100th
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At time t = 0, the points have all approximately 66 units
of population. They are however, subject tb fluctuations of the
order of 5 percent, and when a point exceeds 68 it receives the
second function and begins to grow if there is a sufficient market.

At time t = 4, the situation is depicted in Figure 3, and

we see that five points have received the function 2 and have
grown toa population greater than 75. These are the "nuclei"
of future cities, and already lay down the skeleton of the urban

structure that will emerge.

In Figure 4 the situation at t = 12 is shown. The structure
that was only embryonic at t = 4 has "solidified" and we see that

five large centers are growing. The points 15 and 31 have already

received a.ll four functions considered in our simUlation while
points 10, 40 and 44 have three functions. In partiCUlar, the

examination of the evolution around point 15 reveals how the
crowding at this point .results first in the build up of residential
suburbs, with a coefficient of employment less than unity, and
then how, later, a certain decentralization of economic functions
occurs, as the short and medium range activities find sufficient
market in the suburbs. This has important consequences for the

evolution of the urban area as a whole, but during the interval
t = 12 to t = 20 the central core density continues to grow, but
attains a maximum at about this time.

Also of interest is the formation of a "twin-city" on the

points 38 and 40 due simply to the particular sequence of events
that the random fluctuations of our partiCUlar simulation has

produced.

KEY TO FIGURES 3 TO 11 AND FIGURES 12 TO 14

• Center having only function 1

• Center with functions 1 and 2

~ Center with functions I, 2 and 3

~ Large center having functions 1, 2, 3, and 4
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FIGURE 3. THE DISTRIBUTION OF POPULATION ON A RECTANGULAR PLAIN
REPRESENTED BY FIFTY POINTS AT TIME t = 4 UNITS. (AT t = a ALL
POINTS HAD 67 UNITS.)

9



FIGURE 4. THE DISTRIBUTION OF POPULATION AT TIME t = 12 UNITS.
THE STRUCTURE IS BEGINNING TO "SOLIDIFY" AROUND FIVE MAIN CENTERS.
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FIGURE 5. AT TIME t = 20, THE CENT~~L CORE DENSITY OF THE
LARGEST CENTER IS GOING THROUGH A MAXHlUM (152). THERE IS
M..A..RKED "URBAN SPRAWL" AROUND THIS CENTER TOO.
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FIGURE 6. AT TIME t = 34 THE BASIC STRUCTURE IS ESSENTIALLY STABLE.
TWO CENTERS HAVE UNDERGONE CENTRAL CORE DECAY.
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FIGURE 7. BETWEEN TIME 34 AND 46 THE BASIC PATTEP~ IS STABLE.
NOTICE HOWEVER THE SHIFT IN CENTER OF THE "TWIN CITY" BETWEEN
t = 20 AND t = 46.



Att = 20 we see .thatfive central places have received the
four functions present_ in our simulation and have deformed the
population density contours in consequence, the residences and
economic functions sprawling outwards to a distance depending on

the size of the center (Figure 5).

Betweent = 20 and t = 34 the structure remains more or less
unmodified (Figure 6). The second center. of the "twin-city" cap­

turesthe fourth function and~wingto its superior geographical
situation begins to dominate its partner, which was by chance the
first to appear. Another important feature is that the· ".oldest"
and largest center on point 15 has, during this period, suffered
a severe decline in its central core density. This results from
the complex non-linear dynam:i.cs of our system, whereby the
residences of the population that is employed at 15 spread out­
wards, and then attract local economic functions into the suburbs.

These, however, once present, act as a source of local employment
and in addition, act as a screen for the lower order functions
diverting the clients of the central core which, consequently
suffers a loss both of employment and of population.

Continuing the simulation from t =34 to t = 46 shows that
the structure remains basically unmodified, although as the
growth analysis will show there now occurs a polarization of the
growth in the system between the upper and lower halves of our

lattice (Figure 7).

In Figures 8to 11 we show the zones in which the growth
is concentrated during the different periods of the evolution of
our system.. Initially, in the first period going from t = 0 to
t = 10, we see that the growth is highly concentrated spatially
in the five centers which are at the origin of the urban structure
of the region. The areas of above average growth generally
encompass only a single point, and this point has a very large
growth rate. This can .be referred to as the period of "central
urbanization."
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FIGURE 10. IN THE PERIOD 20-34 TWO LARGE URBAN CENTERS SUFFER A
SEVERE DECLINE OF THEIR CORES, AND ABOVE AVERAGE GROWTH IS NOW
ALMOST EXCLUSIVELY CONCENTRATED IN THE INTER-URBAN SPACE.
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FIGURE 11. THE URBAN CENTERS COMPETE AMONG THEMSELVES
AND THIS LEADS TO APOLAR.IZATION OF GROWTH.
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In the next stage, Figure 9, which covers the period t = 10

up to t = 20 we see that, while the central cores are still growing
strongly, the "growth plateaus" are much broader, shOWing the
effects of suburban growth, that is of urban sprawl.

In the.period t = 20 to t = 34, howeit-er, Figure 10 shows an
entirely different pattern. Here, the central cores of three
centers suffer a strong decline, and the remaining two grow very

little. The zone of "above average growth" is nearly all concen­
trated in the inter-urban region, and marks a period of "counter
urbanization."

In the final period of our simulation, between t = 34 and

t = 46 (Figure 11) it is clear the inter-urban growth of the
preceding interval marks the beginning of real competition between

the upper and lower halves of the lattice, and although the
growth remains essentially non-urban it shows the effect of the
competitive growth of the different parts of the urbanized area.

1.3 ALTERNATIVE ST~~TEGIES FOR DECISION ~~.KERS

In this section we look at the effects on the global evolu­
tion of the system and of different decisions taken at time t = 34.

This allows us to demonstrate the potential of our methods for
the exploration of decisional alternatives, where either local
or global changes can be imposed on the system, and where we
begin to see the possibility of studying quantitatively the most
basic issues of government: 1) Who should a decision favor and
how much, and at the expense of whom? 'and 2) What hierarchy or
decisional power will lead to which local strategies, and what

-will'fle the -Tmpact of the latter on the evolution of the whole?

In this section, in the very simple, somewhat artificial
urbanization example we have presented earlier, we shall demon-

r

strate the principle on which such fundamental questions can be
explored. The importance of this section shOUld therefore be

judged, not on the details of the particular example used, but
on the basic hu.rnan difficulties of a Hcollective dimension" to
individual acts, which is today perhaps the most important, almost
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wholly unanswered question facing our increasingly interdependent
society.

Having explained the wider background of the discussion, let
us turn to the example. Let us return to the simulation at t = 34
with an urbanization pattern as shown in Figure 6. We shall

investigate the effects of three different decisions, and after­
wards the question of a decisional strategy.

First, let us suppose that the population of the region as
a whole is fixed over the next period, and explore its relative

growth and decline from the time t = 34 to the time t = 50. First
of all, if there is no intervention, no decision, and all the
parameters are unchanged then the "growth and decline" zones are

those shown in Figure 12. We note that the system undergoes a
certain "polarization,"and that in particular, the area across

the center of our region, which has no urban development continues

to decline, and in terms of percentage-change is most marked.

Now, let us examine the effects on the growth/decline
patterns of the system, of some governmental "road building"
program, or of some new technology, which has the effect of halv­
ing transportation costs (that is the values of !pCl), !p(2),ep(3)
and ep(4) relevant up'to t= 34, are now halved). This is in fact

a strategy that has been proposed in various countries in order
to help arrest the decline of different regions. In the case of
our simulation, as has been found in reality for those countries,

I the'improved transport efficiency has the effect of accelerating

'the decline of the rural areas between centers, and of favouring
most the largest center (Figure 13).

The third st!ategy which we shall examine concerns the

possibility of directly interfering in the urban structure by the
placing of a specific investment at a particular point. This
corresponds to the idea of a "New Town" or of the strategic

development of a hitherto undeveloped center, in the hope of
generating self-sustaining economic growth in the otherwise
decliningz'one (Figure 14).
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Upper Half.

Lower Half

FIGURE 12. GROWTH PATTERN FOR THE PERIOD t = 34 + SO, IN THE
ABSENCE OF ANY CHANGE IMPOSED AT t = 34. IT IS THE PATTE~~

AGAINST WHICH ALTERNATIVES ~1UST BE JUDGED.
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The first important remark that must be made is that in all
our simulations there are present small fluctuations of population
and employment which test the stability of the basic structure,

and could if this is not assured lead to the amplification of a
particular fluctuation and the adoption of a new spatial pattern.

However, we may see from the Figures 4 to 7 that the basic
structure becomes stable to these small fluctuations by about
t = 16. Thus, we know' already that if we wish to modify the

pattern, and in particular to move to a structure without the
"declining rural hole" in the middle, then a perturbation of some
larger size is required. In fact, in a series of computer

simulations it was possible to ascertain that for almost certain,
self-sustaining growth at the chosen point 26, it is necessary

to invest 19 units at time t = 34. If less than this is inserted
then the chances are that it will simply waste away since the

basic structure is stable.

In Figure 14 we see the growth/decline pattern for a simula­
tion where 19 units of population and employment were added to
point 26. The investment flourishes, producing a remarkable

increase in population and jobs at and around this point. Of
course this is at the expense of other points which would other­
wise have grown,but it can be shown that the final structure

resulting at timet= 50 following the perturbation, is more
efficient than otherwise, since there is less transportation
required for the same total consumption as before, ,Which means

that mean haul distances are shorter and variations in the con­
sumptions of goods between urban and rural populations is less
marked.

However, before drawing any hasty conclusions about which

strategy should be adopted let us briefly examine the manner in
which the administrative division of a region may affect which
decisions are adopted. Consider the case where our l~ttice is

divided into two separately governed districts: the upper half,
and the lower half.
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Let us briefly discuss the consequences for each half of

each of the three strategies above. First, if there is no change,
(Figure 12) we see that growth occurs in both districts, but
slightly more in the upper than in the lower. We have between
t = 34 and t = 50

upper half + 11 lower half - 11.

Second, if we halve the transportation costs in the system
(Figure 13) we find that although the greatest growth occurs in

the largest center (point 15), this growth is in some way achieved
at the expense of the district itself, since we find for the
period t = 34 to t = 50,

upper - 6 lower + 6.

The third strategy consists in placing 19 units of population
on point 26, which is in the lower half. Not surprisingly, when
the investment pays off we find that the lower half gains greatly:

upper - 41 lower + 41.

We see from this, that in fact, it pays the lower half to invest
the 19 itself, since rather than do nothing it gains:

41 - 19 + 11 = + 33.

Thus the "strategy" played by the lower half is to invest in a

center on its' frontier with the upper, which aauses a gro~~h at
the expense of the upper half. This basic idea of strategy
corresponds clearly to many problems such as the conflict of two
political parties where effort must go into attracting supporters
from the middle ground,and similarly for competing firms with
different ranges of products.

The importance of these results is not however, in their

detail. It is rather in the principle which is demonstrated that
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in a complex system of interdependent entities, the decisions
made by individuals, or by collective entities representing
certain localities have a real effect on the evolution of the
system and of everyone in it. This is the "collective" aspect of
individual actions which characterizes our society, and decisions

should be made as far as possible in the knowledge of these
collective effects, rather than finding that the" system" is
sweeping the various actors ina quite unexpected and undesirable
direction, asa result of their individual behaviour.

This is the basic aim of the methods that we have described
here, sinc,e, by choosing the various parameters so that they
correspond to a particular urban hierarchy, it is possible to
simulate not only the long 'term repercussions of a given strategy
for the immediate locality involved, but also the consequence of
that strategy for the region in which it is embedded.
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2, A BOOLEAN FORMALISM FOR INTRA-URBAN DYNAMICS

2.1 A SIMPLIFIED FO~~LISM SUITABLE FOR MODELLING COMPLEX SYSTEMS

The description which we have developed in the previous

reports, and in the above sections, based on differential equa­
tions, becomes rapidly cumbersome when applied to complex systems
involving a very heterogeneous system with many interacting

populations. Although very large computers can still simulate
the evolution of such systems, for the purposes of reflection
and understanding concerning the qualtitative evolution of the

structure of the system, it may be sufficient and indeed conven­
ient to have some simplified -description. The "full" description
given by the differential equations contains information on both

the llqualitative" nature of the structure, and the details of the
"quantitative" change in the variables involving a growth or decay
of the densities at each point. In the pursuit of a particular

aim such as, for example, a plan concerning the internal structure
of a city, then as a 'first step in the comparison of different
strategies the planner may require only knowledge of the " qua-li­

tative" repercussions on the structure, and this may in turn
demand the establishment of certain "key values" (thresholds) for
the variables.

Let us consider for example the intensity of white emigration
out of a particular neighbourhood as a function of the percentage
of black inhabitants of that neighbourhood. We may find a curve

having three stages: for the first two critical values of the

black popul~tion, perhaps there is only a small increase in white
emigration, but for the third one there may be a large increase.
In this case the planner may well choose to concentrate simply on

this latter jump, and consider the two others as negligible, in
.'

which case it becomes possible to reduce the complicated functional
relation between the two variables to a very simple rogical binary

function. This expresses the following approximate relationship:
white emigration is negligible (= 0) as long as the percentage of
black residents in the neighbourhood remains below (= 0) the
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third critical value; it becomes non-negligible (= 1) as soon as
the third critical percentage is attained (= 1).

This small example shows us how, Boolean formalism, as has
been developed for the theory of genetics,lcould be introduced
to the problem of urban evolution if the fundamental hypothesis,
rather natural in genetics, were found to be acceptable in this
case too. Indeed we should be able to classify urban populations
into discrete sets, each characterized by a behaviour implying a
series ofdichotomic choices. This would mean that threshold
could be meaningfully defined for these populations as a whole
and that nothing essential is lost by neglecting the obviously
continuous distribution of the individual behaviours.

The Boolean approach is·basically an approximation of the
dyanmics ofa complex non-linear system,which is more properly
described by differential equations. Because of this, it clearly
cannot give as much information to the user. Thus, for example,
it can only permit the discussion of the stationarity of a
structure and not its stability since stability analysis neces­

sarily implies non-binary "perturbations." For the description
in terms of differential equations, "stability" refers both to
the quantitative values of the variables as well as to the
"organization" of these values in some macroscopic pattern. Thus,
in the Boolean formalism the whole aspect of "growth" or "decline"
is missing except when it is involved in triggering structural
changes.

As a tool for the planner the formalism has to betalcen with
care since it presupposes a workable separation of the "input" or
"control" variables, on which the planner is-supposed to be able
to act, :fr-om the Hinternal" variables-which reflect·-the '-response
of the system resulting from individuals of the various populations
present,reactingaccording to the criteria specific to these

, populations. Planning strategies are meant to be compared by

studying the effects of different sequences of changes in the
"input" or "control" variables, perhaps involving a subtle fine­
tuning of the timings of the events in a particular sequence.
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The internal variables undergo some corresponding sequence of
transitions and this may be compared with the various goals
desired.

In order to extend the temporal range of the model, it is
possible to take into account a coupling between the evolution
of the internal variables and that of the control variables, and

different possibilities can be envisaged and studied by supposing
different scenarios.

In the model presented here, it should be pointed out that
the descirption is not a spatial one; the evolution of each
particular neighbourhood, (each with given values of the "control"
variables) is independent: the interaction with the neighbouring
zones is not taken into account. This is one direction in which

further research will be-directed since it is felt that this is
a rather serious defect. Despite the various simplifications

and perhaps over-simplifications involved in this model, the
dynamical evolution it describes is essentially similar to that
of the much more cumbersome differential equation formalism. It
offers therefore some tool of reflection in weighing different
strategies for planners and decision makers, if the decisional
criteria of the various groups and populations which are in

interaction in an urban area were successfully identified. The
Boolean formalism can therefore also be thought of, not only as

being useful in itself, but also ~s a preliminary qualitative
study, which it is worth doing before moving to a more complete,
quantitative/qualtitative model, should this be necessary.

---

2.2 A SIMPLE MODEL OF RESIDENTIAL LOCATION

In its present version,2 the model introduced here is aimed
at showing the possibilities of the method rather than simulating

some aspects of reality: it is not based on field work; it is
guided only by our intuition of individual behaviours: It is
thus quite speculative. Nevertheless it draws its inspiration
from the situations with which we have been confronted in the
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city we personally know best: the Agglomeration of .Brussels,
Belgium.

We will start by describing the various individual relation­

ships that maintain the different socio-economic agents (these are
the internal variables: four classes of population and the housing

price). The behavioural equations that follow express each
group's conditions of immigration into and emigration out of any
neighbourhood. Some of ·the behavioural factors found in these
equations describe the characteristics of the urban environment
that we choose as relevant to the problem (these are the input
variables: population density, quality of the neighbourhood and

home-to-work travel time). After that we will build up the spon­
taneous sequences of immigration and emigration.

2.2.1 The Behavioural Equations

Let us imagine a hypothetical "city" having four classes of
dwellers whose different behaviours can be explained, for
instance, by cultural and socio-economic:differences: .

- high income residents (A)
middle income resident (8)

low income indigeneousresidents Ie)
low income foreign minority group (V)

Each class chooses its residential location as a functIon of a
series of constraints and requirements which are characteristic
and define each class with respect to the others. Among these

are the relevant "physical" characteristics of the city: popula­
tion density (D), quality of the neighbourhood (H) and home-to­
wor'k travel time (T). Four behavioural equations follow (the

functions a, b, c,d), expressing each group's potential demand
for residential locations. If the system, that is th~ neighbour­
hood, meets the requirements of one of several classes, the

residential immigration can take place and this leads to the
satisfaction of the potential demand ,(the memory variables

30



a, S, y, 0). At this stage, we suppose that the housing supply
is instantaneously adjusted to the demand, i.e., that one immedi­
ately builds all types of housing necessary to satisfy the demand.
In reality, there can be a long time delay between the expression

of a demand ~nd the building of the corresponding housing type
(it is often the case with social housing). The opposite can
however also happen: the supply comes before the demand and the

buildings stay empty. In any case, the method could be modified
in order to describe situations where demand and supply are not
necessarily in equilibrium.

The time delay that occurs between the moment where the

potential demand is- expressed and the moment where it is satisfied
is a characteristic delay we will call "migration delay." One

of the advantages of the Boolean formalism is that one may

differentiate the migration kinetics, by giving different values
to a definite group's migration delay for i~migration and
emigration, but we will not do so here.

To the four internal variables already cited (the four groups
of people), we will add a fifth one of another nature: the
housing price (P). The potential variation of the housing price

depends on several conditions; their formulation leads to a fifth
behavioural equation (function p). When these conditions are met
in a neighbourhood, the housing price can rise (memory variable Ii).

Now what are the location constraints and requirements of

each class of population and what are the conditions of variation
of the housing price? Since we are in the process of writing

urban planni~g fiction, let us imagine that the relationships

between people are tainted by a peculiar tendency towards discrim­
ination: the first three classes reject the foreigners belonging

to the minority group c.6.). The foreigners stick together (.o.)

for cultural reasons but also because they are rejected by the
other groups Co is partially due to the 8 of the other groups).

As to the three first classes, they are willing to mix, except
when the population density is high: in that case, each of them

rejects the one which is just below in the income scale
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(D.e and D.y). Besides ~hesegeneralcharacteristics,each class
of population has requirements reflecting a value system of its

own.

Let us imagine for instance that high income residents fAl
accord great importance to the quality of the environment C,H,J,
On the other hand, their attitude towards indigenous low income
people is less drastic than that towards middle income people they
accept to mix with the former, even at high population density,
providing residents of their own class have already migrated in
the neighbourhood before them (0: + D. This bridge connecting the
two ends of the economic scale·can be interpreted asa tendency

of some high class people to be interested in low income people.
Their hypothetical behavioural equation is then the following:

a = 0 ,H, (D. e) , (0: + y).

Middle income residents (B) are relatively sensitive to the
cost of urban living. The urban space is not entirely accessible
to them for financial reasons: they cannot afford at the same
time expensive housing and high home-to-work travel time or cost
(7T'T); but they can afford the three other possibilities Crr'T,

- -
freT, 7T'T). Yet there is a rider to add here, revealing a wish to

climb the rungs of the social ladder: they like to live in the
vicinity of wealthy people even ·if it is costly (+ 7T'T'o:). After
simplification, their equation is the following:

-
b = 0 ' CD. y) , C7T' T + 0:).

IndigenC'us 10wincome r.esidents (C) are highly sensitive to
the cost of urban living. Thei~ possibilities of choosing a
residential location are even more limited: they can afford to
live in the city providing they have cheap housing and. a low
home- to-work travel time or cost (;" T) .

c=6,;',t.
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Foreign low income residents (0) respond to the same economic

constraints as the indigenous low income residents. They differ
from them however, by the necessity or choice of living together.

d = 60 ITo T •

To these four behavioural equations, let us add now the

housing price (P) equation. In a first trial, we considered the
housing price as an input variable, but further on we have trans­
formed it into an internal variable, because decision makers

generally cannot control it in a free enterprise society. We
have made it essentially sensitive to the nature of the residents:

it goes down when low income people of any kind immigrate into the

neighbourhood; when these are missing, the housing price goes up
when wealthy people come in or when the neighbourhood is charac­
terized by a good quality environment and low density.

p = Y·;5· (a + H.D).

At this stage of modelling, each economic and social variable
is very simply represented by one binary variable, the value of
whose threshold in the system has not been determined. Field

work would reveal a greater complexity in the behaviours. For
instance, the critical percentage of the foreign residents in a
neighbourhood, leading to some reaction on the part of the other
social clas ses - i. e., the fl social efficiency threshold fl of the
o variable - could well be different from one social class to

another. One would then need to use several binary variabLes to
express these nuances between classes or a delayed multi-level
logical representation. 3 What is true for an internal variable

is true too for an input variable: each social class may perceive
differently the physical characteristics of the urban ~pace.

The equations we have just set up are purely deterministic:
they describe the behaviour of the average person of each social

class. Chance - i.e., the existence of some irrationality in the
behaviours or the local presence of other factors than the ones
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that have been introduced in the equations- this chance does not
affect the individual behaviours Cas it does in the models using

differential equations). Nevertheless it does influence the final
states by its intervention in the choice of the inltial states.

At the end of this paper, we will moderate the deterministic

nature of the individual behaviours by introducing a random
variation around the mean of migration time delays. From given

input and initial states, we will finally end up with an estima­
tion of the probabilities linked to each stable state (seethe

results of the simulations in Figures 26 and 27 and in Reference
7) .

2.2.2 \ The Decision Variables

The input variables express the influence of the outside
world on the system. They immediately emerge from the behavioural

equations of which they are parameters. They characterize the
tlphysical tl nature of the neighbourhood. For the urban planner,
for instance, they are decision variables, the channel by which

he can make the urban structure change.

Population density CD) is indeed often determined by local
land use plans.

Neighbourhood quality CH) is also largely influenced by land
use plans. One could consider it as a function of other input

variables, such as the type of housing, the type of environment,
that we will not define here.

Home-to-work travel time (T) is largely determined by the

location of jobs and tra.nsport networks; it can be interpreted
also as the cost of transportation. It is typically the kind of
variable that the urban planner can control.

In the model,the three .binary variables associated with the

three decision variables take the value 1 when they o:llerstep an
arbitrarily chosen threshold.

Figures 15a and b synthesize the functioning of this hypothet­

ical model.
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Internal variables

Residents:

A B C V

a b c d

T

a. S

Housing Price:
p

migration conditions
or potential demand for
residential location

effective migration
or satisfaction of the
potential demand

conditions of variation

p

effective variation

Input variables

D population density

H neighborhood quality

T home-to-work travel time or cost

FIGURE 15a. VARIABLES OF THE MODEL
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A •• 7T ex S y
~J

7T 0 0

ex + + + 0 0

S 0 0 0 0

y 0 0 A •. Effect of the
~J variable in the

row i on the
C + variable in the

column j .

D 0 0 + positive feedback
negative feedback

0 no feedback
H + + 0 0 0

T 0 0

FIGURE ISb. FUNCTIONING OF THE MODEL
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2.2.3 The Collective Structures, Proiected into a Theoretical
\City

The state table (or flow table - Figure 16) describes all

the possible situations for the system. The system - as we have
defined it - is the neighbourhood. Consequently the table gives
us a complete theoretical description of all types of neighbour­

hoods: each column represents a tlphysical" situation and each
line a social content. Nevertheless the whole table does not
represent a city because the neighbourhoods do not interact with

each other (as they do in the models using differential equations).
It would be an important improvement to the method to introduce

interactions between first neighbours; the model would then give

a global description of the city instead of a local one. In this
table, almost all states except for a few, are unstable.

It is then important to define the concept of stability when

it is applied to the city which is characterized by change. This
will lead us to specify the nature of the urban problems which
will be the most suitable for Boolean treatment, as well as to

define the time scale in which we operate. The stability of the
final state is such that neither input variables, not internal
variables will be allowed to change value. This implies a certain
permanence of the urban structures which will not be allowed to
vary enough to make any variable pass from one logical state to

another. This constrains the neighbourhoods to remain qualitative­
ly unchanged but do~~ not exclude quantitative modifications, such

--,.,-,,"~ _ ..''i

as people's and firms' migrations, on the condition that the
qualitative balance be untouched. Then we see that the Boolean

formalism suits urban development _problems CquA~ttative c1l,anRes)
better, by definition, than urban growth problems (quantitative

changes), because of its intrinsic sensitivity to the former. As
to the time scale, it has to include both the characteristic time
required to go from the initial state to the final state, as well

as a tLue sufficient to show the stability of the final state.
This implies that the input variables be unchanged, and consequent­
ly the "physical" structures of the city be relatively permanent.
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Since these physical structures (means of transportation, firms'

technical requirements, ... ) are largely dependent on the technico­
economic system, the time scale is then reduced to the short and
middle term which, by definition, excludes the possibility of

any modification of the technico-economic system. Nevertheless
it is possible to lengthen the prediction term of this type of
model by defining a temporal sequence of input states. This

sequence has to be arbitrarily chosen since it cannot be predicted
by the model.

One can give a spatial image to this state table by imagining

a theoretical city which would show the main tendencies observed

in reality. A real city may be cut up on the basis of criteria
such as the ones we have defined as input variables (population

density, neighbourhood quality andhome-to-work travel time),

since we observe that:
- the population density decreases exponentially to the

periphery and increases again in the surrounding satellites; in
the center, two cases are possible: the density reaches its

maximum or decreases to form what is called a density crater;

- the main employment areas are the central business district

(C.B.D.) and one of several industrial areas; generally arranged
along an axis;

- the neighbourhood quality is generally mediocre in the

C. B. D. and around industrial areas; good in the periphery, in the
historical center and, in some cases, in that part of the C.B.D.
that has been recently renewed.

In order to define the specific theoretical city we are presenting,

we have had to make two choices. On the one hand, we have chosen
its physical characteristics so as to make it look very much like

the Agglomeration of Brussels, Belgium, so that we would finally

be able to illustrate theoretical results with the real situation.
Nevertheless the theoretical city is much larger than Brussels
(since it includes statellites) and the variety of neighbourhood
situations is wider in order to make it match all the cases
contained in the state table. On the other hand, we have been
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forced to locate the social efficiency thresholds in an arbitrary
manner, since we have not .determined their values or their
existence.

The resulting cutting is inevitably arbitrary with[the fol­

lowing characteristics (Figure 17): the industrial areas are
arranged along a S.W.-N.E. rapid transit axis, going through"the
C.B.D.; the factories located at the S.W.end of the axis have
in fact closed down. The population density forms a central
crater, diminishes to the periphery and increases again in three
residential satellites located in the urban fringe. One of them
only is well linked .tothe C.B.D. by a rapid means of transport.
The neighbourhood quality is mediocre along the industrial axis
and in the Northern satellite.

Let us build up'now the input state map (Figure 18). If one
takes ncriteriato each of which is associated a binary variable
(as it is the case in this study), e.ach portion of the city will
be characterized by one of. the Zn possible combinations of values

of the n binary variables. In our case, each area of the theoret­
ical city will be defined by three numbers, .corresponding to the .
columns of the state table. If D represents the population density,
H the neighourhood quality and Tthe home-to-work travel time,
each input state will have the following meaning (s):

D H T
000

001

010

011

100

_ depopulated industrial center

- secondary pole of industrial employment
-·.lQw quality suburb (residential area mixed with abandoned,.

factories for instance)
- depopulated historical center, renewed center. of C.B.D.
- pleasant peripheral residential area ,well linked to the

employment areas
- pleasa.nt residential suburb, badly linked to ·the employ­

ment areas
- part of the first dense fringe, surrounding the C.B.D.,

where residences and factories are mixed
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1 0 1 - industrial satellite, badly linked to the emplo}~ent

areas,showing a dominant dormitory function

1 1 0 - part of the first dense ring, surrounding the C.B.D.,
showing a high neighbourhood quality (renewed or histor­
ical populated area)

- pleasant residential satellite, with a dominant dormitory
function, well linked to the employment areas by a rapid
means of transport

1 1 1 - pleasant residential satellite, with a dominant dormitory
function, badly linked to the employment areas.

Looking at the state table (Figure 16), we notice that a
neighbourhood can reach different stable states even though it
is in the same physical state (col~lln). Indeed, the behavioural

equations, while assuming an average mechanism of interaction at
the individual scale, do not determine in an unequivocal manner
the final state of the system at a collective scale, i.e., the

distribution of people and housing price in the urban space. The
factors influencing behaviour do not intervene solely; the choice
of the initial state - that is the history of the system - may

considerably modify the final state. The change of value of one
internal variable, is in some cases enough to make a very different
situation arise.

The following example illustrates the influence on the
system of a change of value of the internal varaible o. Let us
take also this opportunity to explain in detail how the state

table should be used.

First case

Input state (D,H,T): 000

Initial internal state (rr, a, S, y, 0): 00000

internal states I D,H,T: 000

t 00000 ~00110)

t + LltlCOOIOO +00110,

t + Llt/; 00110 ~00110



Going back to the state table (Figure 16), let us choose ~he

column corresponding to. the input state (000). In this column
are written the values taken by the behavioural equations (p,a,
b, c, d) for each possible internal state (n-, ~, 13, y, o)indi­
cated in the very fir.st column on the left. Let us pick up the
chosen internal state (00000) at time t. We see that the cor­

responding values of the behavioural equations are 00110. This
means that there exists a demand for location in the neighbour­
hood from the part of two groups: middle income residents and
indigenous low income residents. At timet + A tthetwo groups
might be present in the neighbourhood at a concentration higher
than their threshold and the corresponding internal state might
become 00110. However, the interesting point here is that the
immigration delay of each group in the neighbourhood will probably

be different. Two situations are possible:

The middle income residents enter the neighbourhood more
quickly and exceed their threshold at time
t + Il t l . The next internal state is then 00100.

Now let us go back to the first column on the left and select the
new internal state 00100. What are the corresponding values of
the behavioural equations? It is still the same: 00110. This
means that the second group does not see any objections to the
presence of the first one in the neighouthood. So they can come
in and the new internal state at t + ·Iltz will then be 00110.

Since the corresponding values of the behavioural equations are
identical to the internal state, the system has reached a stable
state. In order to have new spontaneous transitions,· something
will have to change in the input state.

if the indigenous low inCome residents migrate first, the
sequence will be the following:

internal states D H T 000

t 00000 --.,-.. 00110

t +/l t 1,;-0_0_0...1_0__+-__00_1_1_0_
t + Ilt z 00110 00110
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The final state will be the same but we will see later on
that it is not always the case.

The two possible sequences of spontaneous transitions are summari­

zed the following way:

t t + !l t l t+ !l t z
00000 S 00100· Y 00110 first case

~ooalO S 00110 second case

The definition of the time delays will make the system choose one

trajectory or the other.

Second case

Input state (D,H,T): 000

Initial internal state (rr, a, S, Y, 0): 00001

In the same input state column as the previous case (000), let

us choose 00001 as initial internal state. The corresponding

values of the behavioural equations are:

internal states D, H, T: 000

00001 -+--;~!Joo 00001

We see that the potential demand for migration expressed by the
two previous groups does not exist, not because of the "physical"

conditions of the neighbourhood but because of the presence of

foreign low income residents at a rate above their social
efficiency threshold. Their presence is considered as repulsive.

The system will then stay stable. So under the same "physical"
conditions, the final structure of the syst~em -Will be-very

different.
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The system - as it has been defined - can reach seven
different states (71, Ct, e, 'Y, 0) (Figure l6)~

- at low housing price:
three situations of one class dominance~

00001
00010

00100

foreign low income residents
iIidigenous low income residents

middle income residents

two possibilities of mixing two groups:

00110

01010
middle income and indigenous low income residents
high income and indigenous low income residents

one possibility of partial integration:

01110 mixing of the threedndigenous classes

at high housing price, there is only one possible stable

state:

11100 the mixing of the two highest income classes

The projection in space of the stable states (Figure 19),
on the basis of the input states map (Figure 18), gives an image

which is a bit confused of the spatial organization of the
theoretical city. However,the maps shbwing thepossibleloca­
tons of each social class at stable states (Figure 20 a,b,c,d)are
somewhat clearer. We will comment on these later on.

Doing the same operation for the housing price, we get a
map showing the stable spatial distribution of housing price

(Figure 21), which is qualitatively consistent with the real

situation of a city like Columbus, Ohio (Figure 22)}
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Predominence of one Cohabitation of two Cohabitetion of three
sociel group sociel groups social groups;

CD 00001 (l) 00110 (i) 01110

IT] 00010 aJ 01010

& 00100 £ 11100

FIGURE 19. THEORETICAL CITY - STABLE STATES MAP
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(b) middle income
residents

Ca) high income
residents

FIGURE 20a,b. THEORETICAL CITY POSSIBLE LOCATIONS OF THE
DIFFERENT SOCIAL GROUPS ATSTA~LESTATE: (a) HIGH INCOME
RESIDENTS, (b) MIDDLE INCOME RESIDENTS
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(cJ indigenous l~

income residents

(d) foreign low income
residsnts

FIGURE ZOc,d. THEORETICAL CITY - POSSIBLE LOCATIONS OF THE
DIFFERENT SOCIAL GROUPS AT STABLE STATE: Cc) INDIGENOUS L01~

INCO~ffi RESIDENTS, Cd) FOREIGN LOW INCO~ffi RESIDENTS
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Average rent

$
150

miles from the center

FIGURE 22. COLUMBUS, OHIO - AVERAGE RENT AS A FUNCTION OF
THE DISTANCE TO THE CITY CENTER - THIS PROFILE CORRESPONDS
TO THE AXIS D~~WN ON FIGURE 21.
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2.2.4 The Comparison of .th~ Theoretical Ci tXwith , a Real City

Before "comparing" the theoretical results with the latest
census of the Brussels' population, it is necessary to describe
the "physical" characteristics of the Agglomeration (Figure 23).5
Divided into two parts bya S.W.-N.E. canalized river, hugged by a

railroad line, the Agglomeration of Brussels is crossed today
by an industrial axis passing through its center (this center is
symbolized on all maps by the· pentagon that used:toform the
walls of the ancient city). Small factories and often damaged
old houses are intimately mixed along this axis. The ancient
city, depopulated today, has developed a classical central business
district on the eastern bank of the valley. Around this area,
there is a ring of densely populated old neighbourhoods which is
the zone corresponding to the first expansion of the city outside
its walls. The population density decreases to the periphery so
that one proceeds little by little from a dominance of compact
apartment buildings to a dominance of single family houses with
much open space. To the South, a beautiful old beech-grove is
one of the most attractive spots of the Agglomeration.

For Brussels, there is no information available about any
critical values of the input variables corresponding to the
social efficiency thresholds of the model. Thus we are forced
to leave it to the imagination of the reader to· interpret the
features of the map described above by trying to locate estimates
of these thresholds in space.

We also have no information about the corresponding values
for the internal variables. As a matter of£act, the only infor­
mation we have is the spatial distribution of the socio-economic
characteristics of the Brussels' population. This could be
interp:rl;;ted as a spatial image of the values reached by the
behavioural equations of the.model. Consequently, here again,
we are forced to choose arbitrarily the real values corresponding
to the hypothetical thresholds.
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Because of the limitations of thel970 populations census,6
'we have approximated income classes with occupational classes:

high income residents correspond to professionals,
employers and high level employees;
middle income residents to the other types _of employees;
low income residents to workers.

Figures 24 a,b, c, show the census tracts having a proportion
of each of these occupational classes higher than its average
proportion in the Agglomeration (percentage of the total active
population). As to the (active and non active) foreigners, the
census gives only their proportion in the total population,
whatever their activity may be (Figure 24d).

The internal structure of the theoretical city is vaguely
consistent with. the reality of the Agglomeration of Brussels
which does not have any peripheral satellite inside its admini­
strative limits. Indeed high income families (Figures 20a .and
24a) carefully avoid the industrial axis on both maps; in Brussels,
they seem to concentrate around public parks and in-the peripheral
neighbourhoods where single family houses are predominant. One
finds them also in the restored and renewed parts of the center.
It seems that they are more sensitive to density than indicated
in the model. The middle income residents (Figures 20b and 24b)
mix with industrial activities only where the population density
is relatively low; they effectively seem to be rather sensitive
to population density. The workers in Brussels (Figure 24c) are
clearly limited to the areas close to the industrial axis. A
comparison with the foreigners' map (Figure 24d) shows that the
foreign workers concentrate around theC.-:a.D, while the indigenous
workers have a tendency to spread along the industrial axis. This
difference in the spatial distribution of workers, according to
their nationality, does not appear on the theoretic.almaps
(Figure 20c,d) which, in other respects, reproduce quite well the
overall tendency of workers to-locate close to the industrial
areas.
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"" .. Parcentege higne~ than
... : the average

FIGURE 24a,b. AGGLOMERATION OF BRUSSELS - LOCATION OF RESIDENTS
BY OCCUPATIONAL CATEGORIES - 1970: (a) PROFESSIONALS, EMPLOYERS
AND HIGH LEVEL EN~LOYEES, (b) OTHER TYPES OF EMPLOYEES
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Average percentage in the
total active population
of the Agglomeration: 31.7%

.. ,

.... :-..., ...

Percentage higher than
the aver.!lge

open space

industrial aree

[c) workers

Average percentage
~n tne total population
of the Agglomeration: 16.1%

foreigners

FIGURE 24c,d. AGGLOMERATION OF BRUSSELS - LOCATION OF
RESIDENTS BY OCCUPATIONAL CATEGORIES AND NATIONALITY -
1970: (c) WORKERS, Cd} FOREIGNERS
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With the same data, let us now draw a map of the 1970

residential cohabitations (Figure 25). Arbitrarily again,

two classes of population cohabit in a neighbourhood when the
proportion of each of them in the neighbourhood oversteps its
average in the Agglomeration, diminished by 20 percent. These

cohabitations in 1970 are not always stable states. Some areas,
we know, have started to undergo a deep transition process. It
is the case, for instance, of the vast South-Western area where

high income families mix with workers: it is the last rural area
included in the Agglomeration limits which has undergone the
classical process of urbanization by expansion of the urban fringe.

Other areas have been stable for some time: the Southern wealthy

neighbourhoods, for instance, and the central foreign neighbour­
hoods which will stay foreign and poor for a long time, even

though they are submitted to a strong demographic pressure and

because of that changing quickly. But information is missing
about this problem of neighbourhood stability.

When we compare the ~ap of all the possible stable states in
the theoretical city (Figure 19) with the map of existing states in
the Agglomeration of Brussels (Figure 25» we notice that the real

situation looks much simpler than the theoretical one. lrhatever
the area, a selection seems to operate among the possible stable

states in ~rder to promote one or two of them. In other words,
in any area, each possible stable state does not have the same
frequency of occurrence. In order to make this type of model

more realistic, we should then associate a probability to each
possible stable state. This is what we have dOEe with the help
of computer simulations, as we will see later on. FOT the moment,

let -us analyze in detai1 the dynamics of the model in order to
appreciate how the Boolean formalism could help in making planning
decisions.

2.3 BOOLEAN FO~~LISM, A TOOL FOR DECISION MAKING?

The Boolean formalism, when it is applied to the study of

our hypothetical city, allows a complex situation to be clarified,
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FIGURE 25. AGGLOMERATION OF BRUSSELS ­
OCCUPATIONAL COPJillITATIONS - 1970
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and according to which one can. adopt two types of attitudes:

on the one hand, one can wish to maximize one's indivi­
dual interest: for example, a household looking for
the best residential location or an entrepreneur trying
to maximize his profit;

on the other hand, one can wish to promote the collec­
tive interest of the entire urban community, knowing well
that there is often ~ome conflict between the indivi-
ual and the collective points of view. This will be
the goals of the urban planner and,·sometimes, of the
politician.

Even though the Boolean formalism allows us to adopt either
of these points of view, we will consider here only the second
case: the case of the urban planner who is confronted with the
necessity of adapting the urban space to the development
constraints.

2.3.1 A General Develo~mentPoliCY or the Search for ~oherence

Between Goals an Means

Let us imagine the case of an urban planner, taking as a
goal, the integration of the different social classes in the
theoretical city. Implicitly he tries to reach his goal with a
strategy which would eliminate a maximum of undesirable effects.
Furthermore, he wishes his goal to be maintained in time:
so this has to be a stable state. Consequently, he wants
to reach a stable state which is as close as possible to 01111 or
11111. The tendency of the three indigenous classes being to
exclude foreigners, it is not surprising to find that in the
state table (Figure 16), there is no stable state integrating all
social classes. The stable state being the closest to this goal
is the one that integrates the three indigenous classes: 01110.
It can be reached only in a low density and nice neighbourhood
which.is close to the employment areas (column 010) a.nd where
housing prices are low.
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In these conditions, the urban planner's reasoning will be
the following:
For the integration of the foreigners, there is only one solution:

change the behaviour of the three indigenous classes with regard
to them and this will lead to a change in their behavioural
equations. For the integration of the three other classes, there

are a lot of possible solutions, dominated by these two require­
ments: put the neighbourhood in the input state (column 010)
(D,H,T) and let the housing price be low Crt = 0)

fix a maximum to the population density which is lmver than

the threshold for which the inter-class rejection takes
place. Employment continuing to increase spontaneously

in the center, the home-to-work travel time will tend to

increase and make the variable T turn to 1;

ther-e are two possibilities of maintaining T at the value
0:

1) if one wants to keep centralized the internal struc­

ture of the city (which is its spontaneous tendency),
one should stop the growth of the city and carry
forward the overall urban growth on other cities of

the region;

2) on the contrary, if one does not want to stop the city
growth, it becomes necessary to change its internal
structure. Here again there are two possibilities:

a) decentralize the employment to the periphery
b) or improve the transportation system

this being ensur-e-d, maintain the housing price at a low

level. A new choice appears:

1) stop land speculation
2) or increase the income of the low income classes.
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2.3.2

Obviously the means suggested by the stable table are not
all equivalent; some of them are feasible for the planner t others

are not. Everything depends on. the room he has for maneuver in
a specific socio-economic system. It falls to him to appreciate
his constraints. This information about the coherence existing
between goals and means is of a crucial importance for the plan­
ner.

The Planning ofas¥eCific Neighbourhood or the Search for
the best Strategy 0 Investments

Maintaining the same goal of social integration - 01110 ­

let us imagine a nice neighbourhood (H = l)t close to the employ­
ment area· (T =0) and let us consider this case· at low and high

densities t starting from the initial state 00000. How could a
planner program the right sequence of inves.tments?

a) at low density

The detailed description of all the possible paths that the

system can follow gives the entire spectrum of possible inves.t­
ment strategies. All paths do not lead to the goal 01110 and,
among the ones that reach it, some are better then others.
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goal

Input state (D, H, T) : 010

Initial state Crr, a, S, y, eS) : 00000

55550 rr
lOOOO~ilOOO S 11100

S-- . I

10100 a 11100

01000 rr S 11100

51100~111OO
...

I
01110 (

I
I

01010 6 ....,01110 I
I
I

65100 51150~OlllO
I
I

:rr I
y 1

11100 I
I

,,/

111100 a 11100

00110

00010 S 00110 -----:3il'~possible stra­
tegies of invest­
ments

Indeed it is only the building of wealthy or middle income
family residences first that will lead to the goal. The building
of low income family houses ffrst would definitely_Aivert the system
from the goal. But in these conditions the decision ~ak~~is con­
fronted with a possible increase in housing price during the execu­
tion of his project, and because of this, the system can be diverted
from the goal at any time. How could the planner evaluate the
chances of success of the chosen strategy?
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Computer simulations are able to give some elements of the
solution (for details of these simulations, see Reference 7).
Let us suppose that the immigration (e;) and emigration(cr) delays
of the social groups, on the average and in any neighbourhood,
obey the following relationships:

e:{o) <e; (e ) < e: (a) < e: (y)

e:(a) =cr(a)

t::(e) = cr(e)

E(Y) = cr(y)
E(O) :: cr(o)

Thus we assume that the most mobile residents in space are the
foreign low income families and the most stable ones the indigenous
low income families. Let us maintain constant these migration .
delays (arbitrary chosen as 20, 30, 40 and 50 with a random
variation of 20 percent around these averages) while allowing the
time delay of the housing price to vary (turn-on delay).

The probability for the occurrence of a stable state strongly
varies as a function of the housing:price rise delay (Figure 26).

When the land speculation is intense and the price rise is rapid,
the threshold value is quickly exceeded and the only possible
state is 11100. The wealthy families are the only ones who can
afford land speculation of such intensity and middle inCome
families who are intent onclibing the social ladder. When land
specualtion becomes weaker, the rise in the price of housing takes
longer and the most probable state is still 11100. Two other
stable states appear however: 01110 (the goal) and 00110 (the
mixing of middle income families with indigenous low income
families). A further. lengthening of the delay strongly increases
the probability of occurrence. of the goal (01110), 'gives the
00110 state with a low probability and gives zero probability for
the state 11100.

In this theoretical example, we see that the probability of
occurrence of the· goal iss. function of the rapidity with which
the price of housing rises. In reality (Figure 25),the frequency
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of occurrence of a state depends on the location of the neigh­

borhood in the city. In other words, this would mean that the
intensity of land speculation varies in the urban space and that
computer simulations of that kind would probably be able to give

some information about the spatial distribution of the speed of
variation of the housing price.

Investment strategy should include a variable fraction of
its costs used to cut down on land speculation. Here again, the

urban planner is free to choose the best way to do so, according
to the economic system involved. He could even try to make a
cost-benefit analysis of different development strategies.

Other initial conditions - 11111 - still at low density

(Figure 27), give a very different probability distribution of
the goal 01110 which can be interpreted as the influence of

history on the final state of the system. In this case, the

influencing factor is no longer the rate at which the price of
housing rises, but that of its fall (turn-off delay). The

temporal strategy will be modified. On the other hand, it is

only from this initial state that one sees the formation of ethnic
neighbourhoods. Foreign immigrants must be imposed on the system

explicity; they do not appear spontaneously in the neighbourhood

by the internal dynamics of the system.

b) at high density

At high density, whatever the initial state may be, the

goal 01110 is unattainable (Figures 26 and 27). (See next page.)

Residential segregation greatly increases, as one would expect
from the equations. Here again, the initial conditions strongly

influence the stable states (Figure 27).
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CONCLUSION

The Boolean formalism has the great advantage of being easily
adaptable to the dynamic analysis of complex systems. It remains
manageable when a continuous formalism, although attractive

because of its greater analytical power, becomes too complex to
handle. Its flexibility, its simplicity and the rapidity of
analysis that it allows could make it a precious help to decision

making in socia-economic matters.
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Details of the simulations

Initial state 00000

Each point of the curves is the average calculated from eight
series of one hundred simulations. These series are charac­
terized by variable turn-off delays ofthehou~ing price

(arbitrary units from 5 to 85). For each simulation, the
values of the delays are randomly chosen ina range of
20 percent around the values.
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Initial state 11111

The simulation method is the same but here the average is computed
from variable turn-on delays of the housing price.
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3. DYNAMIC MODELS OF COMPETITION BETWEEN TRANSPORTATION MODES

3.1 INTRODUCTION

In the preceding reports,l we have attempted to analyse models
describing the creation and evolution of urban structure. However,
transportation within the city was treated in a very summary
fashion, where only the geometric distance between the trip
origin and destination was used. This is of course a vast over­
simplification, and as has been shown (Adams, Figure 28) the

development of a particular form of transport results in a
particular type of urbanization. Trains, trains and highways
promote a directional urban development, while the initial stage
of pedestrian travel, and the later one of automobile trips pro-'.
mote a compact circular form.

While it is true that the type of transportation available
will influence the urban structure, the inverse is also true
since the construction and operation of a publictrinsport
facility, (train, subway, bus, etc.) require a certain transport
of population density and transit demand along its path. Thus,
the location of employment and residences in the urban structure
will depend on the availability of urban transport, and vice
versa. Ultimately, our aim is to include this mutual dependence
in our equations for the evolution of the urban structure,but
here, initially, we will consider the "simpler problem for which
the transit demand is given, and the different modes of transpor­
tation are in "competition symbiosis" or "parasitism".

The dependence of the optimal usage of a means o£transporta­
tion on the distance involved (Figure 29), leads us to suppose
that the solution to the problem of .urban transportation has the
form of a complex hierarchy made up of inter-dependent modes.
The complexity of such a problem maybe gauged from the study of
the competition between two transport modes for the clientele of
a given trip, where such factors as the "quality" of the transpor­
tation offered, and the imitative behaviour of people may playa
decisive role.

72'



r

I
Rural Lend

'0
I

I
:

Rurat Land

____~_~_J

FIGURE 28. EXPECTED DISTORTIONS FROM GROWTH PATTE~~S. THE HIGHLY
ARTICULATED URBAN TRANSPORT NETwORKS OF TRft~SPORT E~~S- II (STREET­
CAR LINES) AND Tv (FREEWAYS) PROMOTED TRANSPORT SURFACES AND
COMPACT, CIRCDLft~ URBAN FORMS. TRAVERSES A THROUGH D INDICATE THE
VARIETY OF CONT~~STING AGE GRADIENTS.

73



..
o
Q.
If>
c:o
t:.

Distance (~m.) 0.5
Time (minutes) 6. I
Speed (~m.p. h.) 5

m

10 16
15 17.5
40 55

IV v

1,oo0~600

60 69
1,000 l,391

VI

FIGURE 29. TRANSPORT GAPS. WHEN DEMAND FOR TRANSPORT (VERTICAL
AXIS) IS PLOTTED AGAINST THE SPEED AND OPTIMUM RANGE OF EXISTING
TRANSPORT SYSTEMS, WE SEE THAT THE TRANSPORT RANGE HAS THREE
AREAS (I, III, AND \7) WHICH ARE WELL TAKEN CARE OF BY PEDESTRIAN,
CAR,AND AIR TRANSPORT . MAJOR GAPS OCCUR· IN AREAS n AND IV
(ADAPTED FROM BOULADON, FIG. 1).

; ,74 :



3.2 MODELS

3.2.1 Introduction

The models which we shall present are models of choice among

different transportation modes. Our purpose here is not to
develop a model of transportation choice which reflects the
actual and complex decisions which go into such choices by
different groups of individuals. Rather it is to present a
methodology which is dynamic and which allows inherent fluctua­
tions in the behaviour of the individuals to play a role (and

often it is a fundamental one) in the determination of the way

the system responds to different mode choices.

We consider the case of choice between two modes of transpor­

tation. Let x and y be the number of individuals who choose

transportation mode I and 2 respectively. Let Al and A2 be the

attractivities of transportation modes I and 2. Let D be the
estimated number of people who want to go from point A to point
E, and assume in this first approach that D is constant (though
in reality D is a function of the locational processes). When

the system reaches stationary state we have

D
= = .. (8)

In general Al and A2 are functions of x and y. System (8)
can have more than one solution. It is not possible to know
without some additional inr~Lm~~iQn which so~ution ~he system

will adopt. In fact we must provide the system with information
on its dynamic evolution in order for it to integrate different
historical occurrences which will determine the final solution

adopted by that system. In general the system will remember its
initial conditions (xO and YO) and the perturbations, both exter­
nal and internal, which have occurred in its history. In this

case only the densities of x and y will be subjected to perturba­
tions.
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In equation (10) the parameter
called the "carrying capacity".
determines the £ina1 state

3.Z.Z Development of the Dynamic Equations

Taking an approach often used in ecology, we write the law
of evolution of the variable z, defined by

z = x + y,

as

.
z = D - z,

where z = dz/dt (t denotes time).
D, which is a constant, is usually
The value of the carrying ~apacity

reached by the system.

For the variables x and ywe assume the same form·for the
equations of evolution:

(9)

(10)

. .
x = D1 - x and y = DZ - y, (11)

Dl and D2 being known functions which must be determined. Since
equation (9) holds for all times t, we have

(12)

The equations of evolution of the variables x and y, given equa7.
tions (8), will therefore be

. DA1 and
. DA2 (13)x = - x y = - Y

Al + A2 A + A21

Note that the carrying capacities in the equations for the evolu­
tion of the variables x and yare functions of time.

In order to illustrate the behaviour of the equations (13)
we have sketched the evolution of the variables x and yfor the
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case when PI = Pl(x,y) is given (Figure 30). In general Pl(x,y)
is not known. Figure 30 shows graphically that z tends asympto­
tically to D, as is obtained by integration of equation (10) over

time. The curve represented by DPl(t) is taken as given and the
curve labelled DPZ(t) is obtained from this by use of the fact
that PI + Pz = 1. The curves for x(t) and yet), which may be
obtained by numerical integration of equations (13), are also
sketched in the figure; It is apparent that the solutions x(t)
and yet) tend asymptotically to DPI and DP Z respectively, and,

for all times t, x + Y = z.

Note that when PI and Pz are given by equations (8) it is
not possible in general to compute analytically the'solutions

xCt) and yet) of equations (13) .. However, mathematical techrliques
do exist wh~ch provide information on the evolution of the system.
For our purposes we may use bifurcation analysis, which yields

information on which possible final solutions are accepted by the
system as well as information on their stability properties when

subjected to perturbations in the densities of x and y.

3.Z.3 The Theoretical Models

The models presented here do not pretend to take into consid­

eration all decisions affecting mode choice. We prefer instead
to develop simpler models which may be computed analytically.

This is done in order to be able to show some of the interesting

properties which appear when PI and P2 are functions of
the state of the system. (See equations (8).)

3.Z.3.1 The First Model

In order to define the model we must give a particular form
to the attractivity functions, Al and AZ. We suppose that these

functions depend solely on the speed of transport. We assume that

(14)
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where vI and v 2 are the velocities of modes 1 and 2 respectively,
and p and q are positive exponents. We suppose, for example,

that mode 1 corresponds to the automobile and mode 2 to the bus.
We further assume, in this example, that there is no interaction
between the two transportation modes (it is not difficult, how­

ever, to remove this restriction).

Figure 31a shows the assumed dependence of the velocity of
cars on their density (the congestion effect - see Haight, 1963,

Ref.2). For the velocity-density relationship for buses, we as­

sume, in addition, that the supply tends to adjust to the demand;
that is, as more people demand bus transit, more buses are put
into service, which results in a reduced overall time of transit

(waiting plus riding time). This relationship is sketched in
Figure 31b.

We may fit the curves of Figures 31a and 31b respectively by

the following analytic expressions:

v1 = 1

a + bx
and d n

y (15)

where a, b, c, d, s, n, and r are positive constants and n < r.
For example, if we take for the velocities of mode 1 (the car)
and mode 2 (the bus) the following:

dy

c + Y
(16)

and for the exponents of equations (14) the following:

P = q = 1;

the equations for the time evolution of transportation modes
1 and 2, equations (13) then become

(17)

.
x = D 1

a + x / (a + x +
dy ) :

c + y
-x,
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FIGURE 31. VELOCITY-DENSITY RELATIONSHIPS (a) FOR THE CAR
MODE AND Cb) FOR THE BUS MODE. .
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It is easily verified that the final stationary states of the
system (x = 0, y = 0) are such that

Xs + Ys = D. (19)

Using this relationship to find the values of the stationary

states, we see from equations (18) that the state (x = D, Y = 0)
is a stationary state. We can therefore write the equation
giving the values of the other stationary states in the following
form:

dx2 + (1 + da)x - (c +D) = 0 .

Then system (18) has the following three 'stationary solutions:

(2.0)

x' = D, . y' = O.

or -(da + 1) + ((da + 1) 2 + 4(c + D)d)1/2
x =

2d

- O.x <

(21)

(22)

(23)

The solution (x , i) is physically not acceptable because x is
negative (or zero). The solution (x+, y+) is physically accept­

able only if (see equation (19)

+D > x .

We may put this condition in the form

(24)

(25)

Solutions (21) and (22) are represented graphically in Figure 32.

We thus see that, for a sufficiently large transit density,
D, the system accepts a solution other than given by Xl = D, y' =

o (all cars). In fact, in this example, the system can tell us
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which solution will be adopted even if we do not know its
historical evolution. The system will adopt a solution only if
it is sUfficiently stable to fluctuations in the densities x and
y. The laws introduced describe only the average behaviour of
the densities, but perturbations around this average behaviour
are inevitable. In our example a stability calculation3 shows

that the solution (x', y') becomes unstable if the density, D,
becomes large enough (whether caused by fluctuations or by other
means). All perturbations (ox, oy) around a stationary state are

assumed to vary with time according to the function exp (ut).
The stability of the stationary state will depend on the sign of

u. If it is positive the system is unstable to perturbations;

if it is negative the system-is s~able to perturbations. Then
the solution (x', y') becomes unstable when

(26)

Note that this stability condition is identical to the condition
for existence of the solution x+ in this case.

Figure 33 presents the bifurcation diagrams showing the

different final solutions the system may adopt and their stability
as a function of the parameter D. We see in Figure 33 (b) that
if D < DC, then the transit density is not sufficiently large for

the initiation of a bus service: the only stationary state
permitted by the system is the state (x' = D, y' = 0). However,
for higher densities D > DC the share of people taking the bus

mode, y/D, increases.

Note that internalpert1.lrbationsnear -a -stationary state

ex y) are such thats' s

o «x o «y •y S
(27)

In the case where y = 0, the perturbation must be introduced ass .
an external factor (corresponding to a new transportation mode).
The theory developed here thus tells us the conditions under which
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FIGURE 33. BIFURCATION DIAGRAMS OF (a) x VERSUS D AND (b) Y VERSUS D .
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the system becomes unstable with regard to the introduction of
a new transportation mode. The condition in which the system
accepts this new mode of transportation (D > DC) obviously depends
on the characteristics of the existing transportation mode (the
parameter a) and on the characteristics of the new one (the

parameters c and d). (See equations 16 and 26). The fundamental
role played by the bifurcations has been illustrated by this
example.

Figure 34 sketches the evolution of the velocities of each

transportation mode and the average velocity in the system as
functions of the density of transit, D (computed when the system
has reached the stationary state).

3.2.3.2 The Second Model

In the first model, we introduced a classical effect for the
attractivity function, namely that as the speed of a transporta­
tion mode increases, the attractivity of that mode increases.
There are other factors, psychological for example, which also
influence the choice. Publicity and increased information about

a particular mode, for instance, may influence an individual's
choice. In a.similar vein the process of imitation for people
taking a particular mode may partially explain some existing
situations. We will show in this section that these kinds of
effects can considerably increase the richness of the behaviour
of the system.

We now introduce into the attractivity functions, psychologi­

cal factors, Fi , to obtain

and (28)

For the functions F. we take the following simple forms:
~
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FIGURE 34 • CAR, BUS., AND AVERAGE VELOCITIES IN THE SYSTEM
AS FUNCTIONS OF THE TRANSIT DENSITY, D
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Where 61 and 6Z are pu~licity terms and o.lx and o.zy are imitation

terms. For the dependence on the velocitYt we use the same forms
as before (equations 15), and in order not to complicate the

problem these velocities will in this case be simplified to

We also take

and

p = q 1

(30)

(31)

in equations (28) .. With these values the equations of evolution,

equations (13), become

6
x = D(xl + 0.1) /

81 + a. +(- 1
I.. X

We shall

for the car).
and (31), this

and (32)

• Z 81 + N ~ e y + yZ) YY = DC 8ZY + o.ZY ) / (x '""1' Z o.Z -.

Note that we have taken all parameters to be positive (it is in

fact certainly possible to have, for example, negative publicity
terms). Figu~e 35 shows the attractivities of the two modes as
functions of x and y.

now discuss the case in which 61=0 (no publicity

As can be seen from equations (Z8), (Z9), (30),
case yields acons'tantattractivityforthecar

mode, Al = 0.1 '

Using equation (19) and the fact that (x! = D, y! = 0) is a
stationary state, we find that the other stationary state of

system (3Z) will be given by

(33)
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This equation will have no, one, or two physically acceptable
solutions with the following properties.

1. If the publicity term for the bus is

62 > C4uluZ)1/Z, equation (33) will have
62 < (4u1uZ)I/Z, equation (33) will have
if the transit density is high enough, n

large enough;

two real roots. For
two real solutions only

c> D , where

(J.Cf. u )1/ 2 - 8
2= . I 2

e:tZ
(34)

2. If equation (33) has two real solutions, y + and y , then the

sign of these roots will depend upon the relative magnitude of
the transit density with respect to the two critical densities

D~ and D~ defined by

(35)

If D
Dl <c
(33)

1 2< D and D < D , equation (33) has two negative roots;
c 2 c 2

n < Dc, equation (33)has two positive roots; D > Dc, equation
has one positive Toot and one negative root.

3. DC < D~ whatever the values of the parameters.

4. For large values of the publicity parameter for the bus,
1/26Z > (Cf.1Cf.Z) , we have

DC < D~ and D~ :> D~ •

For small values of the bus publicity parameter, we have

(36)

and (37)

Figure 36 summarizes these conditions, "showing the various condi­

tions for the solutions of equation (33).
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FIGURE 36. CONDITIONS FOR SOLUTIONS OF EQUATION (33)
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There are qualitatively two different bifurcation diagrams
for the solutions y of equation (33). These are shown in Figure
37. Figure 37a is similar to Figure 33b and so will not be discussed
further. F~gure 37b, where 6Z < (~1~2)1/Z, however, represents
a qualitatively new situation. In this case we might say that

the nonlinear term is more important than the linear term. For

a density DC < D < D~, the system can accept two stationary states,
yl and y+. (The stationary state y is unstable and cannot

therefore be considered physically as a final state since pertur­
bations will always cause the system to move away from this state.)

Let us say that a perturbation in the density y, of value

~ Yi (for a given value of the traffic density, Di ), is needed to
bring the system from the stationary state exl,yl) to the station­
ary state (x+,y+). In Figure 37b we see that the value of the

perturbation, ~ Yi' for DC < D < D~, needed for this transforma­
tion decreases as density of transit, Di , increases. This points
to the role of history in determining which stationary state the

system adopts. Further, if Di > D~, whatever the value of the
perturbation (~ y > 0), the system will spontaneously go to the
sta~ionary state (x+,y+) since the state exl,yl) is unstable when

D > D~. We note that. the bifurcation parameter D measures the
feedback effect in the system. When the feedback parameter is
sufficiently small, D < DC, the system has only one stationary

state. However, if D is sufficiently large, D > DC, a qualita­
tively new stationary state appears in the system. In general,
as D increases, the number of possible stationary states of the

system increases.

Finally, Figure 38 shows under what conditions ~~~~em~y be
co-existence between the two modes of transportation. For

constant a l and a 2 , a state of co-existence between the bus and
the car will appear first (for small values of D) for the case
when there is good publicity, 02 > (~1~2)1/2, and only later for

the case when there is little bus publicity, 02 < eal~2)1/2, which
requires larger values of the traffic density, D for there to be
co-existence.
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92=0.5

FIGURE 37. BIFURCATION DIAGRAMS FOR THE CASES WHEN
(a) 62 > ((11(12)1/2 AND (b) 62 < ((11(12)1/2
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3.2.4 Conclusions

The methodology and models presented in this section have
\ illustrated the importance of behavioural fluctuations in deter-
\ mining the stability of competing modes of transportation. The

bifurcation diagrams introduced in the text to illustrate the
feedback effects resulting when travel choice is allowed to be a
function of the state of the system provide information on the
stability of the system to such fluctuations in human behaviour.
Some stationary states are seen to be unstable even to small
fluctuations, whereas others, though locally stable, would become

unstable if a sufficiently large fluctuation occurred. The
system would then adopt a new solution which is stable to pertur­
bation. This adaptative emergence is one example of the" concept
of order by fluctuation (NicoliS andPrigogine, 1977), whereby a
system reorganizes itself into a new mode pf behaviour when

critical size thresholds for stability are exceeded.
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APPENDIX

BASIC ELEMENTS OF BOOLEAN FORMALISM

The systems analyzed in this appendix are equivalent to a
black box, A, pro'Vid.ed with inputs and outputs. By definition,
it is possible to choose arbitrarily the va.lue of each input
variable, the value of each output variable being determined by
the internal dynamic of the system. Tw.o basic hypotheses are
made:

each variable may take only two values 0 and 1 (binary
variable).

the value of the output variables at time t depends on
the values taken by the input variables at previous moments (we
assume that the system has some memory).

In the first part we will make some remarks concerning
Boolean algebra. In this language we summarize our hypotheses,
while in the second part, we will specify the concept of a system
with memory.

BOOLEAN ALGEBRA -COMBINATORY SYSTEM

Systems considered in this paragraph have no.memory effects.
They are called combinatory systems.

a) Definitions

State space: let a system have n input variables. Each
state has two values 0 or 1. We have then Zndifferent states.
If n = 2, the 4 different states are: (0,0); (0,1); (1,1); (1,0).

Functions space: Letfbe .defined by:

(x •••• x )
1 n
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z may have two different values 0 or 1. The number of different
functions f will be ZZn. If n = 1, we have 4 different functions.

x

o

1

o

o

o

1

I

o

I

I

b) Logical functions of a combinatory system

In a combinatory system in which we know the input variables,
we can compute the values of the output variables (z). We can
define the following operations of the Boolean algebra t, +, and.

- -- .. ---

xl x2 z

0 0 1

0 1 I z = xl e x2

I I a

I 0 I

Rules of multiplication and addition.

X I

o
o

I

I

We define also the

X2 xl + v xl . x 2~2

0 0 0

I I 0

I I I

0 I 0

I I
following operation:

-
xl xl

0 I

I 0
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The following rules can be easily shown:

- -
Xl + x 2 = Xl . x 2

- -
Xl . x 2 = Xl + x2

SEQUENTIAL SYSTEMS

a) In the above systems, no dynamical effects are included.
Input and output were supposed to adjust themselves instantaneous­

ly. In the case of urban systems, such an hypothesis cannot be
accepted . For_example, let [be the average transportation time
from A to B. [will be the threshold of perception of the trans­
portation time for the people moving from A to B The phenomena
will be discretized in the following manner (Fi~ure39).

b) [can be the explicative variable of another phenomenon,

for example [=0 could be the condition to switch or maintain a

phenomenon of migration, measured by the variable Pab · -Pab will be
the threshold of the variabl~ Pab . The~ituatlon is represented
in Figure 40.

6 is the growth time delay for the variable Pab

In the following section we will write the general equations of
a sequential system.

c) We do have a sequenti~l system if the knowledge of the
internal variables (at time t) is not sufficient to determine the
value of the output variables (at time t). In this case we will

take into account the history of the system by including a new

kind of variable in the system: the memory variables. A
sequential system can be represented in the following manner:
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FIGURE 39. SEQUENTIAL SYSTEMS a
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D.>------'-

FIGURE 40. SEQUENTIAL SYSTEMSb
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x1---t---------;r ~----------_+_-zl
/ ,,'<-----------+--

xn---+-----rl \ I z
{ Y A YI-1 -----. p

r----\~ 1 ll- ~

~ Yr'/-/----------.

1-...-----=--7//-_~b.0~
( B 2

L....- ---...;~- - - -b.
3
- -r--------'

-

Xl xn input variables.

zl z output variables.

Yl Yr memory variables.

Yl Yr memory functions.

A is a combinatory system. When the signals go into the system
B, they are retarded. The equations of the whole system are:

Z j (t) = f j (x1 (t), ..., xn (t); y1 (t), ..., yr (t) )

In general we have different growth and decay time delays for

a given variable. We have
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Then equation (39) becomes:

This is a system of implicit equations in Y. The values of the
variables xl ... x are given; these variables can be corrsidered. n
'as parameters. The knowledge of t-he initial conditions and of

. the values of the input variables, allows us (41) to .compute t.he

value of the memory variables for each time. For fixed input

variables, when we have Yi(t) = Yi(t) , for each i,then we are in
a stable state. If not, we are in an unstable state. The system
evolves to a stable state or to a cycle.

d) Let us assume for example that:

" D = 0

Pab
It'c Pab

0 0 r 1 0

0 1 0 0

1 1 0 0

1 0 cev

D = 1

Pab [

1 1

cQ)
o 1

1 1

@ and for D = 1

If we start from
we have two possible

For D = 0, the system has one stable state

the system has also one stable state ®
the unstable state Pab = 1; c = 1 forD= 0,
different evolutions.

ll---i~~Ol---.....""O0---1.~@

or ll---il~"®

The system will take the first path if the decay time delay of
the variable Pab is less than the decay time-de1ay·of the variable
D. Such a phenomenon is called a critical course phenomenon and
will be represented in the following manner:
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/ 01.------i~!!!l>O O----,:!lIo-i!lID>@

ll~

In general, when for a set of given values of the input variables,
'different final stable states are possible, the system evolution

will be very important in the determination of the stable state

finally adopted. We will clarify this remark by the following
example. Let us define the system by the following diagram:

a

o

o

1

1

b

o

1

1

o

A B

o 0

o 1

o 0

o 1

If we start from the state a = 1 and b = 0, the system can,
depending on the values of the time delays, evolve to the stable

state ® or to the stable state <[Q). The different possible
system evolutions (starting from 10) may be represented in the
following diagram:

@-~~®

il---)Do-)Do-@

For some values of the time delay, the system can run around (w)
*before reaching a stable state. I

For systems in which the equation (41) is given, there are

some rapid algorithms to find the stable states and the cycles.

*This happens only if the system has some memory of the time at
which the process leading to its growth or decay began. There is
always a demand for the decay of the variable a, then the system
will reach a stable state after a finite period of time. In the
other case (no memory effect) if the system takes the cycle (w)
once,it will remain there.
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